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Abstract

A procedure is developed to determine the natural frequencies of vibration of thick orthotropic shells of
revolution consisting of a material having a radial variation of properties. Governing equations are
developed using the linear orthotropic three-dimensional theory of elasticity, and a numerical solution is
obtained using the differential quadrature method. The solution has geometric generality in that thick shells
of revolution with arbitrary constant thickness and smoothly varying meridian can be considered. The
method is validated through comparisons with previously published results, including results for a thick
transversely isotropic spherical shell with radially varying material properties. Sample results are given for a
thick inhomogeneous toroidal shell, and conclusions are drawn.
r 2005 Published by Elsevier Ltd.
1. Introduction

Hollow bodies of revolution (thick shells) are used in a number of engineering applications
including pressure vessels, piping, machinery, etc. The bodies consist mostly of cylindrical,
spherical, or toroidal form. With the introduction of new applications employing new materials a
capability to carry out analyses for inhomogeneous materials is desirable. The background theory
see front matter r 2005 Published by Elsevier Ltd.
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required is the three-dimensional theory of elasticity. A specific need is for the determination of
accurate natural frequencies of vibration for thick shells of revolution made of inhomogeneous
orthotropic materials.
Three-dimensional vibration analyses of thick shells of revolution have been reported

in a number of studies. Among the geometries that have been considered are the cylin-
drical [1–3], spherical [4–10], and toroidal [11,12]. A few studies have sought to generate a
single solution for general thick shells of revolution [13–15]. The earlier studies considered shells
formed of isotropic homogeneous materials. Non-isotropic thick shells of revolution have been
the subject of the more recent studies. They include work on thick cylindrical [2] and spherical
[6–10] shells, and on general thick shells of revolution [14]. Vibration studies considering
inhomogeneous materials, particularly radial functionally graded materials include those of Chen
et al. [7], Chen and Ding [8], Chen [9] and Suzuki and Kosawada [14]. Additionally, there have
been studies considering inhomogeneous materials that have dealt with stress or deformation
analyses [16].
In the present work, the three-dimensional theory of elasticity is used to develop equations

that predict the natural frequencies of vibration of orthotropic inhomogeneous thick
shells of revolution. A general semi-analytical approach is adopted, in which solutions
are sought for specified circumferential harmonic modes of vibration. The theory is specifically
applicable to cylindrical, spherical, or toroidal shells of arbitrary constant thickness,
having a radial variation in material properties. To obtain numerical results use is made
of the differential quadrature method (DQM). The procedure is validated through com-
parisons with results cited in the literature. The validation examples involve thick isotropic
cylindrical, spherical, and toroidal shells, and an inhomogeneous transversely isotropic
thick spherical shell. Several different boundary conditions are covered. New results are then
given for inhomogeneous thick toroidal shells. The paper ends with an appropriate set of
conclusions.
2. Vibration theory

The position of a typical point P of the thick shell is defined by a radius vector R ¼ Rðq1; q2; q3Þ,
where the qi are position variables. These variables are selected so that q1 � a and q2 � b locate a
point in the vertical radial plane (Fig. 1), while q3 � y defines the angular position of that plane
about the axis of symmetry of the body. The Lamé coefficients Hi are defined by

Hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R;i:R;i

p
, (1)

where the comma subscript indicates differentiation with respect to the position variable(s) qi that
follow. The Hi for shells of revolution are dependent only on two variables, a and b, and are
readily determined. For a cylindrical coordinate system with a ¼ r, b ¼ z one has H1 ¼ 1, H2 ¼ 1,
H3 ¼ r. For a spherical system with a ¼ r, b ¼ f one has H1 ¼ 1, H2 ¼ r, H3 ¼ r cosf, where f
is the angle measured from the horizontal. For a circular toroidal system with a ¼ r, b ¼ f one
has H1 ¼ 1, H2 ¼ r, H3 ¼ Ro þ r cosf, where Ro is the bend radius, r is measured from the bend
center-line, and f is measured from the positive horizontal.



ARTICLE IN PRESS

β, u2

θ, u3

θ

α, u1

Fig. 1. Coordinates and displacements.
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The equations of motion of the three-dimensional theory of elasticity are given in general
curvilinear coordinates [17] as

ðH1H2H3Þ
�1
½ðH2H3s1Þ;1 þ ðH3H1s12Þ;2 þ ðH1H2s13Þ;3� þ s12H1;2=ðH1H2Þ

� s2H2;1=ðH1H2Þ � s3H3;1=ðH1H3Þ � r €u1 ¼ 0,

ðH1H2H3Þ
�1
½ðH3H2s12Þ;1 þ ðH3H1s2Þ;2 þ ðH2H1s23Þ;3� þ s12H2;1=ðH2H1Þ

� s1H1;2=ðH1H2Þ � s3H3;2=ðH3H2Þ � r €u2 ¼ 0,

ðH1H2H3Þ
�1
½ðH3H2s13Þ;1 þ ðH3H1s23Þ;2 þ ðH1H2s3Þ;3� þ s13H3;1=ðH3H1Þ

þ s23H3;2=ðH3H2Þ � r €u3 ¼ 0, ð2Þ

where the si, sij are the normal and shear stresses, r is the mass density, and €u1, €u2, €u3 are the
acceleration components. It can readily be demonstrated that these equations reduce to the
equations of motion in cylindrical or spherical coordinates as given by Kachanov et al. [18], when
appropriate choices are made for the Lamé coefficients. Account is made in Eq. (2) and
subsequently of the fact that derivatives of the Lamé coefficients with respect to q3 are zero for
shells of revolution.
For an orthotropic material [19] the stress–strain relations are given as

s1 ¼ a1�1 þ a2�2 þ a3�3; s12 ¼ a7�12,

s2 ¼ a2�1 þ a4�2 þ a5�3; s13 ¼ a8�13,

s3 ¼ a3�1 þ a5�2 þ a6�3; s23 ¼ a9�23, ð3Þ
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where the �i, �ij are the normal and shear strains, and the ai, i ¼ 1; . . . ; 9, are material properties.
In the present study the ai vary in the q1 (radial) direction, i.e. ai ¼ aiðaÞ. Simplifications arise
when there is material symmetry. For example, for an isotropic material the ai are constants [19]
given by

a1 ¼ a4 ¼ a6 ¼
E

1þ n
1� n
1� 2n

; a2 ¼ a3 ¼ a5 ¼
E

1þ n
n

1� 2n
,

a7 ¼ a8 ¼ a9 ¼
E

2ð1þ nÞ
, ð4Þ

where E and n are the Young’s modulus and the Poisson ratio.
The strain–displacement relations [17] in the linear theory are given by

�1 ¼ u1;1=H1 þ u2H1;2=ðH1H2Þ,

�2 ¼ u2;2=H2 þ u1H2;1=ðH1H2Þ,

�3 ¼ u3;3=H3 þ u1H3;1=ðH1H3Þ þ u2H3;2=ðH2H3Þ,

�12 ¼ u2;1=H1 þ u1;2=H2 � u1H1;2=ðH1H2Þ � u2H2;1=ðH1H2Þ,

�13 ¼ u3;1=H1 þ u1;3=H3 � u3H3;1=ðH1H3Þ,

�23 ¼ u3;2=H2 þ u2;3=H3 � u3H3;2=ðH2H3Þ, ð5Þ

where the displacement components u1; u2; u3 are, respectively, in the a-, b-, and y-directions
(Fig. 1). Substituting the strains (5) into the stresses (3) gives

s1 ¼ a1B1u1;1 þ ða2B2 þ a3B3Þu1 þ a2B4u2;2 þ ða1B5 þ a3B6Þu2 þ a3B7u3;3,

s2 ¼ a2B1u1;1 þ ða4B2 þ a5B3Þu1 þ a4B4u2;2 þ ða2B5 þ a5B6Þu2 þ a5B7u3;3,

s3 ¼ a3B1u1;1 þ ða5B2 þ a6B3Þu1 þ a5B4u2;2 þ ða3B5 þ a6B6Þu2 þ a6B7u3;3,

s12 ¼ a7B4u1;2 � a7B5u1 þ a7B1u2;1 � a7B2u2,

s13 ¼ a8B7u1;3 þ a8B1u3;1 � a8B3u3,

s23 ¼ a9B7u2;3 þ a9B4u3;2 � a9B6u3, ð6Þ

where the Bi, i ¼ 1; . . . ; 7, are known functions of the Lamé coefficients Hi and their derivatives,
defined by Eq. (5).
Assuming cyclical vibrations the displacements for the typical circumferential harmonic mode

are taken as

u1 ¼ uða; bÞ cosmy sinot,

u2 ¼ vða;bÞ cosmy sinot,

u3 ¼ wða; bÞ sinmy sinot, ð7Þ

where m is the number of the circumferential harmonic, o is the natural frequency, t is the time,
and u, v, w are the displacement functions for the harmonic m.
Combining Eqs. (2) and (6), and substituting in the expressions (7), leads to three homogeneous

differential equations for the three displacement functions and the frequency. In the development
of the derivatives of the stresses of Eq. (6) with respect to q1 � a, account is made of the variability
of the material properties ai in the radial direction. It is seen in particular from the form of
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Eqs. (1) and (6) that the derivatives of ai; i ¼ 1; 2; 3; 7; 8, with respect to a are required. Developing
the equations one obtains for the typical harmonic m a set of governing equations of the form

L11uþ L12vþ L13wþ ro2u ¼ 0,

L21uþ L22vþ L23wþ ro2v ¼ 0,

L31uþ L32vþ L33wþ ro2w ¼ 0, ð8Þ

where the Lij are differential operators. Eq. (8) is of the sixth order, two orders lower than that for
a Love–Kirchhoff thin-shell theory. The operators are defined through

L11u ¼ C1u;11 þ C2u;22 þ C3u;1 þ C4u;2 þ ð�m2C5 þ C6Þu,

L12v ¼ C7v;12 þ C8v;1 þ C9v;2 þ C10v,

L13w ¼ mC11w;1 þmC12w,

L21u ¼ C13u;12 þ C14u;1 þ C15u;2 þ C16u,

L22v ¼ C17v;11 þ C18v;22 þ C19v;1 þ C20v;2 þ ð�m2C21 þ C22Þv,

L23w ¼ mC23w;2 þmC24w,

L31u ¼ �mC25u;1 �mC26u,

L32v ¼ �mC27v;2 �mC28v,

L33w ¼ C29w;11 þ C30w;22 þ C31w;1 þ C32w;2 þ ð�m2C33 þ C34Þw, ð9Þ

where the quantities Ci, i ¼ 1; . . . ; 34, are lengthy but known functions of the Lamé coefficients
Hi, and their derivatives with respect to a and b, and of the material properties ai, and their
derivatives with respect to a.
A solution is obtained herein for a thick shell whose meridional surfaces are stress-free. For

these surfaces, defined by a ¼ constant, the conditions to be satisfied are

s1 ¼ s12 ¼ s13 ¼ 0. (10)

End conditions for the body on radial surfaces defined by b ¼ constant, need not be enforced for
a body complete in the meridional direction, such as a toroidal shell. Such boundary conditions
need, however be enforced for a body not complete in the meridional direction, such as a
cylindrical shell, or on a body whose meridian ends on the axis of symmetry. For these latter type
bodies ‘shear-free’ boundary conditions are satisfied on the radial lines representing real or de-
facto boundaries. The conditions to be satisfied on these lines are

u2 ¼ s21 ¼ s23 ¼ 0. (11)

A two-dimensional eigenvalue problem is defined by Eqs. (8)–(11), for each choice of m40, in the
variables a, b. It is noted that in the three-dimensional theory of elasticity the number of domain
and boundary equations is equal, unlike the case of Love–Kirchhoff shell theory, where there are
three domain and four boundary equations.
The m ¼ 0 case, i.e. the axisymmetric harmonic, is a special simpler case, which can easily be

extracted from the general case. For the axisymmetric case it is necessary to take u3 � 0, s13 � 0,
s23 � 0, and to set all derivatives with respect to y to zero. Furthermore, the domain equation (8),
and each set of the boundary conditions (10)–(11), reduce from three to two.
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3. Solution by differential quadrature

Application of the DQM allows for the conversion of the differential equations written for a
particular harmonic m to a set of linear simultaneous algebraic equations [20]. A grid of sampling
points is defined in the radial plane (for the m ¼ 0 and m40 cases). The derivative of a function in
a given direction is replaced by the weighted sum of the values of the function at specified
sampling points in a line following the given direction. For a generic function f ðxÞ of a single
variable, the series used to replace the rth derivative of the function at the sampling point xi, is
taken as

drf ðxÞ

dxr

����
xi

¼
XM

h¼1

A
ðrÞ
ih f ðxhÞ, (12)

where the A
ðrÞ
ih are the weighting coefficients of the rth-order derivative in the x-direction for the

ith sampling point, f ðxhÞ is the value of f ðxÞ at the sampling point xh, and M is the number of
sampling points in the x-direction. For a generic function of two variables gðx; yÞ the series for the
ðrþ sÞth partial derivative at the sampling point xi; yj is taken as

qðrþsÞgðx; yÞ

qxrqys

�����
xi ;yj

¼
XM

h¼1

A
ðrÞ
ih

XN

k¼1

B
ðsÞ
jk gðxh; ykÞ, (13)

where B
ðsÞ
jk and N describe the series for the y-direction, and gðxh; ykÞ is the value of gðx; yÞ at the

sampling point xh; yk. The weighting coefficients are determined a priori with the help of an
assumed grid and a set of trial functions. In the present study, when the meridian is incomplete,
the well-known Chebyshev–Gauss–Lobatto spacing of sampling points is used, together with
polynomial trial functions, for both directions. When the meridian is complete an equal spacing of
points is used for the meridional direction, coupled with Fourier trial functions. For either scheme
explicit formulas are available [20] for the weighting coefficients A

ðrÞ
ih , B

ðsÞ
jk .

Applying the quadrature rules (12)–(13) of the DQM to the differential equations for the
domain (8) and enforcing these at the interior sampling points of the DQM grid leads to a set of
linear simultaneous equations. Applying the quadrature rules to the boundary conditions
(10)–(11) and enforcing these at the boundary sampling points leads to a second set of
simultaneous linear equations. Combining the domain and boundary equations one obtains a
single set of simultaneous linear equations which governs the problem. The matrix form of this
set is

½K �ðUÞ ¼ l½M�ðUÞ, (14)

where ðUÞ is the unknown vector of the displacement functions at the sampling points, l is the
eigenvalue, dependent on o, and ½K �, ½M� are the known ‘stiffness’ and ‘mass’ matrices. Standard
matrix eigenvalue extraction routines may be used to solve Eq. (14).
The derivation of the lengthy governing equation according to the procedure described herein

allows for an analysis of constant-thickness orthotropic inhomogeneous thick shells of revolution
of arbitrary smooth meridian. The appropriate values of the Lamé coefficients Hi are inserted at
the solution stage, i.e. on enforcing either the domain or boundary conditions at the DQM
sampling points. Thus, the equations derived can readily be used for the common thick shells of



ARTICLE IN PRESS

D. Redekop / Journal of Sound and Vibration 291 (2006) 1029–1040 1035
revolution. Furthermore, the DQM approach is clearly more adept in handling changes in
boundary conditions than the ‘series approach’, so that a single derivation can be used for several
different types of boundary support.
4. Validation and results

The validity of the current procedure is demonstrated with the aid of five examples. The first
three examples concern isotropic thick cylindrical, toroidal, and spherical shells. The cylindrical
shells have boundary conditions which are ‘shear-free’. The toroidal and spherical shells are
completely free. The fourth example concerns a transversely isotropic thick spherical shell, with
free boundary conditions. The fifth example concerns an inhomogeneous transversely isotropic
thick spherical shell, also with free conditions. Unless otherwise indicated for all DQM solutions
given herein a grid of 19� 19 sampling points is used for cylindrical and spherical geometries, and
a grid of 19� 20 points for toroidal geometries. Results are given for a frequency parameter O
defined as O ¼ Ko, where K is a scalar constant defined in the following.
For isotropic materials the properties are taken as

n ¼ 0:3; E ¼ 0:2e12Pa; r ¼ 7800kg=m2 (15)

For the transversely isotropic material of the fourth validation problem the material properties in
Eq. (3) are taken, in units of 1010 Pa, as

a1 ¼ a2 ¼ a3 ¼ 2; a4 ¼ 20; a5 ¼ 12; a6 ¼ 20; a7 ¼ a8 ¼ 1; a9 ¼ 4. (16)

For the inhomogeneous transversely isotropic material of the fifth validation problem the material
properties are taken as

ai ¼ a0
i x

g; r ¼ r0x
g, (17)

where x ¼ r=rm, rm ¼ ðri þ roÞ=2, ri; ro are the inside and outside radii of the sphere. The a0
i have

the values given by the ai of Eq. (16), g is a specified constant, and r0 is the mass density at the
inside surface. The derivatives of ai; i ¼ 1; 2; 3; 7; 8, in the radial direction are given through the
relation ai;1 ¼ aig=r. The material properties of the fifth validation example also apply to the
inhomogeneous transversely isotropic thick toroidal shell discussed subsequently.
For the first validation example results are obtained for ‘‘shear-free’’ isotropic thick cylindrical

shells of four different geometric cases. Results obtained previously from a Fourier–Bessel (FB)
series solution are available for these shells [1]. The present procedure yields also results for plane
strain modes which are not present in the previous solution.
Table 1 gives a comparison of results from the DQM with results of the previous solution. In

the table h, L, R represent, respectively, the thickness, length, and mean radius of the cylinder. For
all geometric cases the frequency parameter O is given for the first six modes, for the zeroth and
third circumferential harmonics. Following the previous solution K is taken as K ¼ ðh=pÞ

ffiffiffiffiffiffiffiffiffi
r=G

p
,

where G ¼ E=½2ð1þ nÞ�. It is seen that the present DQM approach gives, for each of the natural
frequencies cited in the previous work, results having relative differences less than 0:002%.
For the second validation example results are obtained for four cases of freely supported

isotropic thick toroidal shells. The external cross-sectional radius ro for each case is kept constant
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Table 1

Comparison of O for isotropic thick cylindrical shell with Fourier Bessel (FB) method [1]

h=R L=R m Method O1 O2 O3 O4 O5 O6

0.2 1
2

0 FB 0.22024 0.66791 1.22953 1.75438 2.24719 2.99800

DQM 0.22024 0.66790 1.22953 1.75437 2.24719 2.99799

3 FB 0.24332 0.44654 0.73649 1.10083 1.27496 1.74680

DQM 0.24332 0.44654 0.73649 1.10083 1.27495 1.74680
1
4

0 FB 0.58066 1.23753 1.67392 1.81630 2.62151 3.02871

DQM 0.58065 1.23753 1.67391 1.81630 2.62150 3.02868

3 FB 0.60084 0.82324 1.25731 1.30527 1.70117 1.83161

DQM 0.60084 0.82324 1.25731 1.30526 1.70116 1.83160

0.5 5
4

0 FB 0.31092 0.67531 1.24088 1.76774 2.25634 3.00123

DQM 0.31092 0.67531 1.24088 1.76773 2.25634 3.00122

3 FB 0.36838 0.64417 0.97607 1.22449 1.54804 1.76134

DQM 0.36838 0.64417 0.97607 1.22448 1.54803 1.76133
5
8

0 FB 0.61465 1.24807 1.68683 1.82281 2.62998 3.03244

DQM 0.61465 1.24807 1.68683 1.82281 2.62998 3.03243

3 FB 0.69540 0.94557 1.31584 1.45837 1.83112 1.97190

DQM 0.69539 0.94557 1.31582 1.45836 1.83111 1.97190

Table 2

Comparison of o (Hz) for isotropic thick toroidal shell with FEM

Ro ri Method o1 o2 o3 o4 o5 o6

1.6 0.4 FEM 239.8 308.5 339.5 499.9 507.4 510.9

DQM 239.8 308.5 339.1 499.7 506.9 510.8

m 2 2 0 3 0 1

0.8 FEM 150.9 227.0 258.8 279.1 291.6 299.7

DQM 149.9 226.7 258.5 278.2 290.7 298.6

m 0 2 2 1 1 2

2.4 0.4 FEM 135.8 159.1 234.0 311.0 325.1 348.2

DQM 135.8 159.0 233.6 310.9 325.0 348.0

m 2 2 0 3 1 0

0.8 FEM 124.8 125.9 147.4 221.3 227.2 235.2

DQM 124.0 125.7 147.1 220.3 226.2 234.2

m 0 2 2 1 2 2

D. Redekop / Journal of Sound and Vibration 291 (2006) 1029–10401036
at 1.0, while the bend radius Ro is varied from 1.6 to 2.4, and the internal radius ri is varied from
0.4 to 0.8. Results are also obtained using the finite element method (FEM). In the latter method
the three-dimensional mesh used features a 20-node 60-degree-of-freedom element.
Table 2 gives a comparison of results obtained using the DQM with the FEM results. For each

of the four geometric cases the natural frequency o is given in Hz for the first six modes. The
circumferential harmonic mode numbers as determined by the DQM are also given. It is seen that
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the present DQM gives, for each of the four cases, results having differences less than 1:0% of the
FEM results.
For the third validation example results are obtained for four cases of freely supported isotropic

thick spherical shells. The external radius ro for each cases is taken as 1.0, while the internal radius
ri is varied from 0.3 to 0.9. Results obtained using an exact formula have been published
previously for these spheres by Young and Dickinson [5].
Table 3 gives a comparison of results obtained using the DQM with the previous results [5]. For

each of the four geometric cases the frequency parameter O is given for the six lowest eigenvalues.
The factor K is taken as K ¼ ro

ffiffiffiffiffiffiffiffiffi
r=G

p
. The type of the modes, either spherical (s), or toroidal (t),

as quoted in Ref. [5] is also presented. All frequencies labelled ‘s’ are found also in the m ¼ 0
results. The presence in solutions for spherical shells of the zero harmonic modes in higher
harmonics has been discussed previously by other authors [4,9]. It is seen that the present method
gives, for each of the natural frequencies cited in Ref. [5], results that agree to four figures with
those of the previous results.
For the fourth validation example results are obtained for a single geometric case of a

transversely isotropic thick spherical shell. The shell radii ri; ro are, respectively, 1.0 and 2.0. The
material properties are as defined by Eq. (16). Results obtained using the FEM [4], an analytical
approach [8], and an exact formula [8] have been published previously. DQM results are
determined for a total of four grid sizes, ranging from 7� 7 to 19� 19.
Table 4 gives a comparison of results obtained using the DQM with the previous results. For

each of the various solutions the frequency parameter O is given for the first five, and eleventh
modes. The factor K is taken as K ¼ ri

ffiffiffiffiffiffiffiffiffiffi
r=a7

p
. It is seen that the DQM solution converges rapidly.

Furthermore, the DQM solution corresponding to the finest grid is closest to the exact solution of
any of the approximate solutions, the maximum relative difference being less than 0:001%.
For the fifth validation example results are obtained for two geometric cases of transversely

isotropic thick spherical shells having a radial variation of material properties. The cases are for
thickness ratios t� ¼ ðro � riÞ=rm of 0.2 and 1.2. Results are given for nine values of g in Eq. (17)
Table 3

Comparison of O for isotropic thick spherical shell with exact solution [5]

ri=ro Method O1 O2 O3 O4 O5 O6

0.3 Exact 2.391 2.494 3.674 3.809 3.862 4.498

DQM 2.391 2.494 3.674 3.809 3.862 4.498

Type s t s s t s

0.5 Exact 1.933 2.435 3.143 3.780 3.813 3.873

DQM 1.933 2.435 3.143 3.780 3.813 3.873

Type s t s s t s

0.7 Exact 1.523 2.256 2.292 3.147 3.246 3.620

DQM 1.523 2.256 2.292 3.147 3.246 3.620

Type s s t s s t

0.9 Exact 1.260 1.552 1.798 2.100 2.120 2.548

DQM 1.260 1.552 1.798 2.100 2.120 2.548

Type s s s t s s
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Table 4

Comparison of O for transversely isotropic thick spherical shell with published results

Method O1 O2 O3 O4 O5 O11

FEM [4] 1.783 2.502 3.120 3.394 3.707 5.152

Analytical [8] 1.78225 2.49629 3.10472 3.39334 3.67441 5.15141

Exact [8] 1.78224 2.49626 3.10448 3.39334 3.67332 5.15141

DQM 19� 19 1.78224 2.49626 3.10448 3.39334 3.67331 5.15141

DQM 15� 15 1.78224 2.49626 3.10446 3.39334 3.67330 5.15141

DQM 11� 11 1.78218 2.49603 3.11385 3.39333 3.73397 5.15142

DQM 7� 7 1.81384 2.67779 — 3.39314 4.11442 5.15209

Table 5

Comparison of O for inhomogeneous thick spherical shell with analytical solution

ri ¼ 0:9, ro ¼ 1:1 (t� ¼ 0:2) ri ¼ 0:4, ro ¼ 1:6 (t� ¼ 1:2)

n ¼ 2 n ¼ 3 n ¼ 2 n ¼ 3

g [9] DQM [9] DQM [9] DQM [9] DQM

�2.0 2.5394 2.5394 3.3657 3.3657 3.0274 3.0274 3.9377 3.9377

�1.5 2.5353 2.5353 3.3609 3.3609 2.8803 2.8803 3.7880 3.7879

�1.0 2.5312 2.5312 3.3559 3.3559 2.7440 2.7440 3.6467 3.6466

�0.5 2.5270 2.5270 3.3506 3.3506 2.6192 2.6192 3.5145 3.5144

0 2.5227 2.5227 3.3451 3.3451 2.5065 2.5064 3.3918 3.3917

0.5 2.5184 2.1584 3.3394 3.3394 2.4057 2.4056 3.2788 3.2787

1.0 2.5141 2.5141 3.3334 3.3334 2.3165 2.3164 3.1754 3.1753

1.5 2.5098 2.5098 3.3272 3.3272 2.2383 2.2382 3.0815 3.0813

2.0 2.5054 2.5054 3.3207 3.3207 2.1701 2.1700 2.9966 2.9963
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ranging from �2:0 to 2:0. Results have been published previously for these g values by Chen [9],
who used an analytical approach.
Table 5 gives a comparison of results obtained using the DQM with the previous results. For

each of the two geometric cases the lowest frequency parameter O is given for the n ¼ 2 and n ¼ 3
modes, where n is the term defining the spherical harmonic of the solution. These n values
correspond to the circumferential harmonic m values of the current solution. The factor K is taken

as K ¼ rm

ffiffiffiffiffiffiffiffiffiffiffiffi
r0=a07

q
. It is seen that the DQM gives results that have maximum relative differences of

about 0:01%.
New results are next given for a transversely isotropic thick toroidal shell having a radial

variation of material properties. Four geometric cases are covered which are identical to the cases
discussed in Table 2. The material properties are those defined by Eqs. (16)–(17), and the
parameter g is varied from �2 to þ2. Results are given in Table 6 for the frequency parameter O
for the lowest frequency for each of the circumferential harmonics m ¼ 0; 1; 2; 3. The value of K is

taken as K ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffi
r0=a07

q
, where ro is the outside cross-sectional radius.



ARTICLE IN PRESS

Table 6

Results for O for inhomogeneous thick toroidal shell

Ro ¼ 1:6; ri ¼ 0:4; ro ¼ 1 Ro ¼ 1:6; ri ¼ 0:8; ro ¼ 1

g m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

�2.0 1.2642 1.9600 0.9275 1.9833 0.6511 1.2080 0.9439 1.7217

�1.5 1.2450 1.9684 0.9375 1.9863 0.6512 1.2065 0.9447 1.7215

�1.0 1.2362 1.9719 0.9462 1.9868 0.6510 1.2048 0.9453 1.7210

�0.5 1.2170 1.9680 0.9535 1.9848 0.6505 1.2029 0.9459 1.7203

0 1.1941 1.9524 0.9596 1.9806 0.6499 1.2008 0.9464 1.7195

0.5 1.1690 1.9221 0.9644 1.9744 0.6498 1.1984 0.9469 1.7184

1.0 1.1428 1.8794 0.9681 1.9667 0.6478 1.1959 0.9473 1.7172

1.5 1.1140 1.8313 0.9709 1.9576 0.6464 1.1932 0.9475 1.7157

2.0 1.0902 1.7812 0.9729 1.9476 0.6448 1.1902 0.9478 1.7141

Ro ¼ 2:4; ri ¼ 0:4; ro ¼ 1 Ro ¼ 2:4; ri ¼ 0:8; ro ¼ 1

g m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

�2.0 0.9482 1.3013 0.5228 1.2220 0.5441 0.9269 0.5311 1.2135

�1.5 0.9451 1.3018 0.5316 1.2349 0.5441 0.9272 0.5318 1.2138

�1.0 0.9386 1.3010 0.5395 1.2462 0.5438 0.9273 0.5323 1.2138

�0.5 0.9301 1.2988 0.5464 1.2557 0.5434 0.9271 0.5328 1.2135

0 0.9188 1.2952 0.5523 1.2635 0.5427 0.9266 0.5332 1.2130

0.5 0.9085 1.2903 0.5573 1.2696 0.5419 0.9260 0.5335 1.2121

1.0 0.8950 1.2838 0.5613 1.2744 0.5409 0.9251 0.5337 1.2109

1.5 0.8793 1.2758 0.5645 1.2778 0.5396 0.9240 0.5339 1.2094

2.0 0.8643 1.2664 0.5669 1.2803 0.5382 0.9226 0.5340 1.2077
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The results of Table 6 indicate that the lowest frequency arises for the m ¼ 2 harmonic for all
geometric cases except the small thin shell (Ro ¼ 1:6, ri ¼ 1:0, ro ¼ 0:8). For the thick shells the
lowest frequency increases up to 8:4% when g is increased from �2:0 to 2.0. For the thin shells the
lowest frequency varies less than 1:0% for the same variation of g. The extent of the variations is
generally similar to that observed earlier for spherical shells [9].
5. Conclusions

The general procedure described herein gives results showing excellent agreement with
previously published results obtained using analytical and numerical methods. The procedure,
while semi-analytical, has an accuracy approaching that of series solutions. New results are given
for inhomogeneous thick toroidal shells with radial variation of material properties, and the effect
on the lowest frequency of the inhomogeneity is indicated. A number of important problems
concerning thick shells of revolution remain to be studied, such as piezoelectric and thermoelastic
behaviour, and different levels of inhomogeneity. The present procedure evidently is a very
promising one for dealing with such problems.
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